3.6.69 \(\int \frac {x}{(a+b x^3)^{2/3}} \, dx\) [569]

Optimal. Leaf size=72 \[ -\frac {\tan ^{-1}\left (\frac {1+\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}}{\sqrt {3}}\right )}{\sqrt {3} b^{2/3}}-\frac {\log \left (\sqrt [3]{b} x-\sqrt [3]{a+b x^3}\right )}{2 b^{2/3}} \]

[Out]

-1/2*ln(b^(1/3)*x-(b*x^3+a)^(1/3))/b^(2/3)-1/3*arctan(1/3*(1+2*b^(1/3)*x/(b*x^3+a)^(1/3))*3^(1/2))/b^(2/3)*3^(
1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {337} \begin {gather*} -\frac {\text {ArcTan}\left (\frac {\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}+1}{\sqrt {3}}\right )}{\sqrt {3} b^{2/3}}-\frac {\log \left (\sqrt [3]{b} x-\sqrt [3]{a+b x^3}\right )}{2 b^{2/3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/(a + b*x^3)^(2/3),x]

[Out]

-(ArcTan[(1 + (2*b^(1/3)*x)/(a + b*x^3)^(1/3))/Sqrt[3]]/(Sqrt[3]*b^(2/3))) - Log[b^(1/3)*x - (a + b*x^3)^(1/3)
]/(2*b^(2/3))

Rule 337

Int[(x_)/((a_) + (b_.)*(x_)^3)^(2/3), x_Symbol] :> With[{q = Rt[b, 3]}, Simp[-ArcTan[(1 + 2*q*(x/(a + b*x^3)^(
1/3)))/Sqrt[3]]/(Sqrt[3]*q^2), x] - Simp[Log[q*x - (a + b*x^3)^(1/3)]/(2*q^2), x]] /; FreeQ[{a, b}, x]

Rubi steps

\begin {align*} \int \frac {x}{\left (a+b x^3\right )^{2/3}} \, dx &=\text {Subst}\left (\int \frac {x}{1-b x^3} \, dx,x,\frac {x}{\sqrt [3]{a+b x^3}}\right )\\ &=\frac {\text {Subst}\left (\int \frac {1}{1-\sqrt [3]{b} x} \, dx,x,\frac {x}{\sqrt [3]{a+b x^3}}\right )}{3 \sqrt [3]{b}}-\frac {\text {Subst}\left (\int \frac {1-\sqrt [3]{b} x}{1+\sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,\frac {x}{\sqrt [3]{a+b x^3}}\right )}{3 \sqrt [3]{b}}\\ &=-\frac {\log \left (1-\frac {\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )}{3 b^{2/3}}+\frac {\text {Subst}\left (\int \frac {\sqrt [3]{b}+2 b^{2/3} x}{1+\sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,\frac {x}{\sqrt [3]{a+b x^3}}\right )}{6 b^{2/3}}-\frac {\text {Subst}\left (\int \frac {1}{1+\sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,\frac {x}{\sqrt [3]{a+b x^3}}\right )}{2 \sqrt [3]{b}}\\ &=-\frac {\log \left (1-\frac {\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )}{3 b^{2/3}}+\frac {\log \left (1+\frac {b^{2/3} x^2}{\left (a+b x^3\right )^{2/3}}+\frac {\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )}{6 b^{2/3}}+\frac {\text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )}{b^{2/3}}\\ &=-\frac {\tan ^{-1}\left (\frac {1+\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}}{\sqrt {3}}\right )}{\sqrt {3} b^{2/3}}-\frac {\log \left (1-\frac {\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )}{3 b^{2/3}}+\frac {\log \left (1+\frac {b^{2/3} x^2}{\left (a+b x^3\right )^{2/3}}+\frac {\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )}{6 b^{2/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.18, size = 116, normalized size = 1.61 \begin {gather*} \frac {-2 \sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3} \sqrt [3]{b} x}{\sqrt [3]{b} x+2 \sqrt [3]{a+b x^3}}\right )-2 \log \left (-\sqrt [3]{b} x+\sqrt [3]{a+b x^3}\right )+\log \left (b^{2/3} x^2+\sqrt [3]{b} x \sqrt [3]{a+b x^3}+\left (a+b x^3\right )^{2/3}\right )}{6 b^{2/3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/(a + b*x^3)^(2/3),x]

[Out]

(-2*Sqrt[3]*ArcTan[(Sqrt[3]*b^(1/3)*x)/(b^(1/3)*x + 2*(a + b*x^3)^(1/3))] - 2*Log[-(b^(1/3)*x) + (a + b*x^3)^(
1/3)] + Log[b^(2/3)*x^2 + b^(1/3)*x*(a + b*x^3)^(1/3) + (a + b*x^3)^(2/3)])/(6*b^(2/3))

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {x}{\left (b \,x^{3}+a \right )^{\frac {2}{3}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x^3+a)^(2/3),x)

[Out]

int(x/(b*x^3+a)^(2/3),x)

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 100, normalized size = 1.39 \begin {gather*} \frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (b^{\frac {1}{3}} + \frac {2 \, {\left (b x^{3} + a\right )}^{\frac {1}{3}}}{x}\right )}}{3 \, b^{\frac {1}{3}}}\right )}{3 \, b^{\frac {2}{3}}} + \frac {\log \left (b^{\frac {2}{3}} + \frac {{\left (b x^{3} + a\right )}^{\frac {1}{3}} b^{\frac {1}{3}}}{x} + \frac {{\left (b x^{3} + a\right )}^{\frac {2}{3}}}{x^{2}}\right )}{6 \, b^{\frac {2}{3}}} - \frac {\log \left (-b^{\frac {1}{3}} + \frac {{\left (b x^{3} + a\right )}^{\frac {1}{3}}}{x}\right )}{3 \, b^{\frac {2}{3}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^3+a)^(2/3),x, algorithm="maxima")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(b^(1/3) + 2*(b*x^3 + a)^(1/3)/x)/b^(1/3))/b^(2/3) + 1/6*log(b^(2/3) + (b*x^3 +
 a)^(1/3)*b^(1/3)/x + (b*x^3 + a)^(2/3)/x^2)/b^(2/3) - 1/3*log(-b^(1/3) + (b*x^3 + a)^(1/3)/x)/b^(2/3)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 173 vs. \(2 (55) = 110\).
time = 0.37, size = 173, normalized size = 2.40 \begin {gather*} \frac {2 \, \sqrt {3} b \sqrt {-\left (-b^{2}\right )^{\frac {1}{3}}} \arctan \left (-\frac {{\left (\sqrt {3} \left (-b^{2}\right )^{\frac {1}{3}} b x - 2 \, \sqrt {3} {\left (b x^{3} + a\right )}^{\frac {1}{3}} \left (-b^{2}\right )^{\frac {2}{3}}\right )} \sqrt {-\left (-b^{2}\right )^{\frac {1}{3}}}}{3 \, b^{2} x}\right ) - 2 \, \left (-b^{2}\right )^{\frac {2}{3}} \log \left (-\frac {\left (-b^{2}\right )^{\frac {2}{3}} x - {\left (b x^{3} + a\right )}^{\frac {1}{3}} b}{x}\right ) + \left (-b^{2}\right )^{\frac {2}{3}} \log \left (-\frac {\left (-b^{2}\right )^{\frac {1}{3}} b x^{2} - {\left (b x^{3} + a\right )}^{\frac {1}{3}} \left (-b^{2}\right )^{\frac {2}{3}} x - {\left (b x^{3} + a\right )}^{\frac {2}{3}} b}{x^{2}}\right )}{6 \, b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^3+a)^(2/3),x, algorithm="fricas")

[Out]

1/6*(2*sqrt(3)*b*sqrt(-(-b^2)^(1/3))*arctan(-1/3*(sqrt(3)*(-b^2)^(1/3)*b*x - 2*sqrt(3)*(b*x^3 + a)^(1/3)*(-b^2
)^(2/3))*sqrt(-(-b^2)^(1/3))/(b^2*x)) - 2*(-b^2)^(2/3)*log(-((-b^2)^(2/3)*x - (b*x^3 + a)^(1/3)*b)/x) + (-b^2)
^(2/3)*log(-((-b^2)^(1/3)*b*x^2 - (b*x^3 + a)^(1/3)*(-b^2)^(2/3)*x - (b*x^3 + a)^(2/3)*b)/x^2))/b^2

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.44, size = 37, normalized size = 0.51 \begin {gather*} \frac {x^{2} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {2}{3}, \frac {2}{3} \\ \frac {5}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {2}{3}} \Gamma \left (\frac {5}{3}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x**3+a)**(2/3),x)

[Out]

x**2*gamma(2/3)*hyper((2/3, 2/3), (5/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(2/3)*gamma(5/3))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^3+a)^(2/3),x, algorithm="giac")

[Out]

integrate(x/(b*x^3 + a)^(2/3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x}{{\left (b\,x^3+a\right )}^{2/3}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a + b*x^3)^(2/3),x)

[Out]

int(x/(a + b*x^3)^(2/3), x)

________________________________________________________________________________________